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HIGHER ORDER RULE CHARACTERIZATION OF HEURISTICS

FOR COMPASS AND STRAIGHT EDGE CONSTRUCTIONS IN GECMETRY

- i - s e oo agn

Joseph M. Scandura, John H. Durniﬂﬂ and Wallace H. Wulfeck II

University of Pennsylvania

- T Y St B O s S Y D e Oy D W S

INTRODUCTION

According to the eminent mathematician George Polya (1962), perhaps the
greatest value to be gained from the study of mathematics 1s the ability to
solve problems. In spite of its importance, however, very little is known
about how te teach people to solve problems. Indeed, one of the greatest
mysteries of our time is why some people cannot solve problems. Specifically,
why is it that some problem séivers suéceed on problems for whick they hLave

all of the necessary componént skills whereas others fail,

The answer, clearly, is that the former either know something which the
others do not, or that they are in some way irnerently superior individuals.
If the laiter is true, of course, there is little that educators can expect to
do to overcome the problem, short of genetic regeneration. If one can identify
missing knowledge (competence) as the source of trouble, however, there may be

a great deal that can be done.

Although it is likely that both factors enter into problem solving abilit
to some extent, it is the implicit belief of many that problem solving is
subject to trailning. Polya, for one, has believed in this possibility suffi-
ciently to devote at ieast five books and numerous articles to the subject
(cf. Polya, 1962). Indeed, his discussions of the role of heuristics in pfob-
lem solving have had'a great influence on many mathematics educatcrs and com-

puter scientists in the area of artificial intelligence.

By a "heuristic " Polya means a rule, technique, or method of attack
which, while not guaranteed to work, leads to success sufficiently often as to
warrant its use. "Working backward from the unknown,' ''the pattern of two loci,"

and "the Cartesian pattern" are three heuristics about which Polya has written.

In spite of the broad acclaim for Polya's work generally, and the in-
trinaic support for his notion of heuristics specifically, it has been diffi-
cult to capitalize on these ideas as fully as might be desired. Although

*Now at Villanova University.



sometimes useful, heuristics are little more than general hints, and leave
much to be desired insofar as pinpointing what a subject must know in order

to solve specific kinds of problems. Furthermore, in order to lend themselves
to technological treatment, whether in computer assisted instruction or in
artificial intelligence, heuristics must be transformed or gncorporated into
strictly mechanical procedures. Since there are any number of ways of doing
this for any given heuristic, heuristics themselves provide only a general

point of view or wav of locking at problems, and are not prescriptive. ¥

The highly diverse lfterature on artificial intelligence 1llustrates on<
role heuristics may play in problem solving. 1In this case, the aim is to come
up with a program or set of programs which enable the computer to solve a given
class of presumably comﬁlex problems. Heuristics such as means-ends analysis
(Simon & Wewell, in Scandura,:1973): and resolution (Nilsson, 1971) are built
directly into the programs. Specifically, a rule {program, or sat of programs)
must be detailed, and where more than one program is involved, mechanisms must
also be built into the machine whieh determine how the rules are to interact.l
In general, neither the rules nor the mechanisms need reflect human behavior.
Even in computer simulation of human behavior, there is no guarantee, just be-
cause computer outputs correspond roughly to human benavior, that the under-

lying procedures are the same.

Recent attempts to make artificial intelligence systems less mechanistic
have centered on semantics (cf. Winston, 1972); that is, the construction of
syntactic procedures constrained to reflect semantic reality. This is an im-
portant step forward, as the rules peopie use almost certainly reflect semantics.
But, this does not address itself to the equally basic question of how the rules
are to interact. Further, different people may and frequently do deal with the
same problems in quite different ways. Machine intelligence is far from baing

able to deal with individual differences.

About all one can say with confidence about current artificial intelli-
gence systems, then, is that they are highly precise. 1t would be dangerous
to make inferences concerning humarn behavior about either the specific prograus
and heuristics used, or the mechanisms which determine how these programs inter-

act. In logical reasoning, for example, there is 1littl. reason to suspect that

1. Some computer scientists make no conceptual distinction among programs,
mechanisms; and procedures.
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human beings make uce of resolution mett-ds even though tiey are involved in

many artificial intelligence systems (cf. Nilsson, 1971).

A THEORY OF PROBLEM SOLVING

Scaadura's (1971, 1973) theory of structural learning provides a poten-
tial basis for increasing the closeness c¢f fit Letween human behavior and sets
of rules (rule sets). The theory spells out z mechanism which governs the way
in which rules interact in certain kinds of human problem solving., This me-
chanism hac been tested empirically under what have been called memory-free
conditions. A basic tenet of this idealized (memory-free) theory is that prob-
lem s»nlving ability can be traced to the presence or absence of higher order
capabilities (higher order rules) which make it possible to combine the coz-
stituent parts (component rules) of problem solutions into coherent wholes
which are adequate for solving the problems. Specifically, according to the
theory, successful problem ssciving frequently -requires higher order rules to
combine the individual component rules. Further, these higher order rulec axe
acsuncd to operate not just on individusl (component) rules, but on classes of

such rules.

Consider the following simple experiment which Scandura and Ackler (cf.
Scandura, 1973, Chapter 7) recently conducted with elementary school childron.
At the beginning of the experiment, each child was taught a number of specific
rules for trading objects. One such rule involved trading n + 2 candy bars
for n balloons. Once having learned such a rule, a child was able to give tih
appropriate number of candy bags in return for any given number of balloons.

$
(The numbers were small enough, n+ 1, 2, ..., 5, so that the chiidren had no
difficulty with addition.) Certain pairs of these rules were such that thc
outputs cfi one could serve as inputs for the other, although the child was not
¢old this explicitly.

The crurial test came after the child was taught one such pair (e.g.,
trading n + 3 pencils.for n qandy bars and trading n + 2 candy bars for n bal-
loons). Coul&xﬁhe child solve a problem (e.g., trading pencils for ballcons)
which required for its solution the corresponding composite rule (i.e., firet
performing the latter rule and then the former)? Si» of the 31 subjects tested
ware éble to solve thils composite problem without any explicit instruction.
(One subject failed to learn to interpret certain of the simpler rules and was

therz2fore not considered in the analysis.)



According to the theory, these subjects entered the situation with an appro-
priate higher order capability,. TheAproblem was to identify that capability.
Analysis of the task led to the hypothesis that given suitable palrs of com-~
ponent rules, the ability to form corresponding composite.rules.would provide a

sufficient basis for solving such problems.

With this in mind, the remaining 24 subjects were randomly split into
two groups. One of :the groups was trained on the higher order rule. That is,
they were shown which kinds of rules could be composed and how to compose them.
Then, all of the subjects were presented with two completely new rules which
could be composed. Tinally, the subjects were tested on the corresponding
composite task. It is important to note that the composite taskh. was'completely
new to the subjects. As had been predicted, all but one of the subjects2 who
had been trained on the higher order rule were able to solve the transfer

problem, whereas none of those who were not given this training succeeded.

According to Scandura's (1971, 1973) theory, these results can be ex-
plained in a simplc wayll The theory rests on the fundamental assumption that
in problem solving people are attempting to achieve some goal. The basic
hypotheses that govern the way in which available rules are put to use are as
follows: . (A) If a subject has a rule available which satisfies a given goal,
then he will apply it. (As trivial as it sounds, this hypothesis is an assump-
tion. It does not logically follow tiiat just because a subject has a rule
available for achieving a given goal that he will use it.) <{(B) If a subject
does not have a rule available for achieving a given goal, then control auto-
matically shifts to the higher order goal of deriving a procedure which will
satisfy the original goal. (C) If a higher order goal has been satisfied,
control reverts back to the previcus goal. (When we say that a higher order
goal has been satisfied, we mean that some new rule has been derived which
contains the stimulus situation in its domain and whose outputs satisfy the
original goal criterion.) The third hypothesis allcws control to revert back

to lower order goals once a higher order goal has been satisfied.3

2. There was reason to believe that the discrepent subject had not actually
learned the higher order rule. He had required an inordinate amount of help
from the experimenter in order to reach criterion. He was therefore run
through the experiment again a week later and this time he performed as ex-
pected.

3. For ‘2 more general and rigorously formulated set of hypotheses, see
Scandura (1973, Chapter 7).
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Putting all this together, we see that if an appropriate higher order
rule is available when control shifts to a higher order goal, then the higher
order rule will be applied and control will automatically revert to the original
goal. The subject will then apply the newly derived rule and solve the problem.
If the subject does not have a higher dtder rule available for deriving a pro-
cedure that works, then control is presumed to move to still higher levels (e.g.,
deriving a rule for deriving a rule that works). Although this process is
assumed to go on in :finitely in the idealized theory, memory places strict
limits on actual behavior.

These assumptions provide an adequate basis for generating predictions
in a wide variety of problem solving situations. Consider the problem of con-
verting a given number of yards into inches. There are two possible ways in
which a subject might solve the problem. The first is to simply know, and have
available, a rule for converting yards dtﬁgg;ly into inches: '"Multiply the
number of yards by 36." In this case, the subject need only apply the rule
according to hypothesis (A). The other way is more interesting, and involves
all of the mechanisms described above. llere, we assume that the subject hes

mastered one rule for converting yards into feet, and another for converting

feet into inches. The subject is also assumed to have mastered the higher

order composition rule above.

In the second situation the subject does not have an applicable rule
which is immediately available, and, hence, according to hypothesis (B), he
automatically adopts the higher order goal of deriving such a procedure. %Then,
accogding to the simple performance hypothecis (A), the subject applies the
higher order compesition rule to the rules for coanverting yards into feet and
feet into inches. This yields a new composiﬁe rule for converting yards into
inches. Next, control reverts to the original goal by hypothesis (C) and,
finally, the subject applies the ncwly derived composite rule by hypothesie /A
to generate the desired response. This sequence of events 1s depicted 'in.:

Figure 1.

—— e e e e s i e g S . et e e e B e A e i
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It should be emphasized that the results are in no way peculiar to highe:
order composition rules. The basic mechanism has also been tested using higher
orderlgeneralization rules which operate on rules with restricted domains and
generate new rules with more encompassing domains (Scandura, 1972, 1973)., A
restricted rule, for example, might generate the sums of number series of the
form 1 + 3+ 5+ ... + 2N - 1, vhereas a géneralization of that rule might

generate sums for all arithmetic series.

Although the theory places very definite constraints on the way in which
rules may interact in problem solving, and in particular helps to insure the
behavioral relevance of any rule set (with respect to a given class of problems),
the theory provides no panacea. It provides a schemalfor identifying rule sets.
which account for given classes of problems, but not the rules themselves. In
devising such rules, it seems clear that semantic considerations will play an
important role. The rules people use almost certainly reflect their familiari-:
with the world they have confronted throughout their lives. Such considerations
place important constraints »n the kinds of rules allowed; In effect, the
theorist is oblized to make intellectual guesses concerning the particular
rules that a particular subjéct or group of subjects is likely to use., VWhat
makes this possible, presumably, is the common culture shared by the subjects
and theorist. Any ultimate test of the adequacy of a particular rule set, of

course, must deal with actual behavior.4

4., The theoretical foundations for such tests have been worked out and
tested empirically (Scandura, 1971, 1973; Scinduva & Durnin, 1971; Durnin

& Scandura, 1972). The basic idea Is to determine each subject's behavior
potential with respect to each rule in an identified rule set, and then to
use the theory as a basis for making predictions concerning performance on
problems which require interactions among the rules. The closeness of fit
between the predictions and observed behavior would provide a direct test <l
the adequacy of the mule set. A study reported in Scandura (1973) on rule
generality was of this type.



PURPOSE

The present study deals with the notion of competence quite apart from
human behavior, albeit competence which to the extent the theory is adequate
has direct behavioral relevance. Our specific goals were: (1) to devise a
quasi-systematic strategy for devising rule sets, and {Z) to illustrate this
strategy in the analysis of geometry construction problems involving compass

and straight edge.

We first consider those problems identified by Polya (1962, Chapter 1)
as being soluble via the "pattern of two loci.' Then we extend the analysis

to encompass constructions involving similar and auxiliary figures problems.

In this analysis, a rule set is simply a set nf rules which may include
lower order rules, higher order rules, or both. A rule set is said to account
for a class of problems if, for each problem in the class,{l) there is a solu-
tion rule in the rule set which has the problem ir its domain and whose range
contains the solution to the problem, or (2) there is a higher order rule in
the rule set which applies to rules in the set and generates a solution rule.

(For a generalization of this idea see Scandura (1973).)

HMETIIOD OF ANALYSIS

It seems unlikely that algorithmic methods can be found for devisiné
non-trivial competence theories. Indeed, Chowsky has argued persuasively that
no such method exists for dealing with observatles as complex as language. He
suggests instead the more modest goal of determining criteria for evaluating
alternative rule sets. Recent work in automatic programming, on the other hand,
while it is quite far at present from a satisfactory solution, is proceeding

on the assumption that significant progress in this direction can be made.

In the present case, the problem of devising rule sets is made simpler
in several ways. First, and most important, the type of competence theory
proposed imposes important constraints on the nature of the rule sets. Second,
restricfing the level of analysis to that of flow diagrams, 'rather than com-
puter programs, makes it natural to represent the constituent operations and

decision making capabilities at whatever level seems to most sdequately reflect




human knowledge rather than at a level predetermined by some programming

language.5

Although the ultimate test of the behavioral adequacy of a given rule
or rule set depends on human behavior, intﬁitive judgments can cften serve to
a first approximation. This is possible in many situations because of the
common culture the comnetence theorist usually shares with his subject. Recent
work in artificial intelligence (cf., ‘linston, 1972), for example, shows that
attention to semantics can pay handsome dividends. Programs constructed with-
out due concern for the way people sort the environment tend to lead to pro-
grams that are overly complex, mechanistic in nature, and have an ad hoc

character.

Uith this in mind, our method of analysis went something as follows,
First, we attcripted to set some reasonably explicit bounds on the class of
geometry construction problems to be considered. 1In particular, we considered

‘only those problems in Chapter 1 of Polya (1962).

Ouyr next step was to classify these problems on intuitive grounds. Our
aim was to place similar problems in the same categories, at least to a first
approximation. e were one step up in this regard, since Polya had already
done a preliminary categorization for us. All of his problems can be solved
by some variant or combination of the three general methods he describes:

(1) the pattern of two loci, (2) the pattern of similar figures, and (3) the

pattern of auxiliary figures.

After the various tasks had been classified, we made sure that the do-
mains and ranges of each task were fairly explicit. Then we identified explicit
procedures for solving each type of task. Care was taken to insure that these
procedures reflected our intuitions as to how intelligent high school students
might go about solving the problems. In some cases it was possible at this

point to subclassify some of the tasks.

o

5. Each of our flow diagrams has a unique start but we ailow any finite num-
ber. of stops. Operations are represented as rectangular boxes containing a
description of the operation. Decision making capabilities, that is, capabi-
lities for deciding which of a given number of predicates is satisfied by an
element, are represented as diamond shapes (or elongated hexagons) containing
statements of the predicates. In our analyses, it was convenient to consider
only binary decisions. In some cases for simplicity, flow diagrams are repre-
sented as directed graphs in which the nodes correspond to decision making
capabilities, and the arrows to operations. For more details, the reader is
referred to Scandura (1973, Chapter 2).



"The most critical step was to identify parallels among the procedures
in each of the various classifications, and even more important to devise
higher order rules which realized these parallels as formal procedures. The
higher order rules so identified, toecether with the component lower order rules
on which they act, constituted the characterizing rule sets. As we shall see,
the lower order rules were primarily components of the various solution proce-

dures, many of which were involved in a wide variety of different tasks.

The final step was to determine the adequacy of the resulting rule set
by determining whether it provided an adequate account of all of the problems
in the class. Where a rule set failed to meet this criteriomn, appropriate
modifications were made. In view of our previous comments, it is not sufficient
that a rule set just "work;" it also must be compatible with human knowledge.
The only really adequate way of determining whether this is the case, is to
effect a behavioral test; that is, to see whether the individual rules provide
an adequate hzzis i1ur assessing the behavior potential of individual subjects,
and thereby - make it possible to predict the behavior of individuval subjects
on new instances (of the rules). Since this was impractical in the present
study, we adopted the weaker and less rigorous criterion of requiring that the

rule sets be compatible with our intuition (cf. Chomsky, 1957).
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PATTERN OF TWO LOCI

Our fivst step was to select a broad sampling of two-loci problems‘and
to devise pvocedures for solwing each type. For example, consider the probfem:
'Given a line and a point not on the line, and a radius R, construct a circle
of radius R which is tangent to the given line and which passes fhrough the
given point." This problem can be solved according to the following procedure:
"Construct the locus of points at distance R from the given point; construct
the locus of points at distance R from the given line; construct a circle using
the intersection point of the two loci as center, and the distance R as radius.'
(Table 1 in appendix A lists 11 two-loci  problems taken from Polya (1962), and

their solution procedures.)

This solution rule clearly involves the pattern of two loei. In this
case, as with all of the problems in Polyz's first category, two loci are deter-
mined one after the otuer; the point of intersection of these loci in turn
makes it possible to construct the goal figure. In each case the goal figure

"is either a circle or a triangle.

Further zmalysis of the class of two-loci problems, however, revealed
certain differences in the ways problems are solved that could have behaviorel
implications. In most solution rules, lige the example above, the two loci can
be found independently, in either order. Furthermore, at no point is it neces-
sary to measure a distance during the course of applying the solution rule.

Some form of distance measurement, however, is required in other tasks (8 through
11 in Table 1). Some of these tasks (8, 9, and 10) require measurément in order
to construct the goal figure; the solution rule for another problem (Rule 11 in
Table 1) involves measurement before the second loéus can be found. 1In still
another task (10 in Table 1), one of the loci is actually given, or equivalent-
ly, can be thought of as obtained by applying an identity rule. The goal figu~-
in still another task (7 in Table 1) is simply the point of intersection of the
two loci, so we can also think of the goal figure as being constructed by an
identity rule. Finally, we mention that the rule for finding the locus of
vertices of an angle of a given measure subtending a given line segment (Sece
Tasks 5-7, Table.1l ) is particularly complex and is probably not immediately
available to most beginning geometry students.
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The Basic Rule Set

As a first step in constructing a characterizing rule set, we systemati-
cally went through the various solution rules for the pattern of two-loci tasks
(see Table 1, Appendix A) and identified all of the different component rules
that are used either (1) in construcfing one of the ioci‘or (2) in constructing
a goal figure. (The eleven lower order rules we identified as involved in the

eleven two-loci tasks are shown in Table 2 of Appendix A.)

All of the lower order component rules were used in at least one solution
rule. Some were used to construct a needed locus, others were involved in con-~

structing goal figures, and some served both functiomns.

The higher order rule in Figure 2 below shows schematically how the

various solution rules may be constructed from the componetit rules.

INSERT FIGURE 2 HERE

-——— — ——— g e e g B e s e i Y O

The higher order rule in Figure 2 applies to the problem (i.e., the stimulus
situation, So) and to the goal (G) itself, as well as to the lower order compo-
nent rules.6

First, an arbitrary representation (Sl, Rl) analogous to the solved prob-~
lem is constructed. In our illustrative task, a sketch like Figure 3 would

serve this purpose.

———— > —— o — o~ — - —— - e e o
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Note that constructing such a representation is not the same either as solving
the problem, or as constructing a solution rule for the problem. The sketch in

Figure 3, for example, can easily be generated by first drawing am arbitrary

6. Strictly speaking, human subjects are presented with statements of problems
as stimuli. Throughout this and our subsequent analyses we assume that the
subject's initial subgoal is to interpret the goal statement (i.e., determine
its meaning). The second subgoal is to solve the problem. In effect, the
initial goal is divided into a pair of subgoals to be achieved in order. Our
analysis is limited to the second part of this task. We assume that the given
problem statements can be uniformly and correctly interpreted.

Although we do not pursue the question here, we have reason to believe that
forming subgoals is closely related to the question of (problem) representation
(cf. Amarel, 1968). ' '
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Figure 2
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circle, then drawing en arbitrary line tangent to it, and placing an arbitrary
point on it. More generally, an arbitrary representation (Rl) of the goal figure
(Ro) is constructed first. Only then 18 a representation (Sl) of the informa-
tion given in the stimulus situation (So) constructed in relation to the repre-
sentation of the goal figure. In effect, the first operation in the higher

order rule amounts to representing geometrically the meanings of goal situations
(i.e., goals plus stimulus situations) by a "sketch," or some equivalent repre-

sentation.

The second step is the question: '"Is there a point in (Sl, Rl) which
satisfies two locus conditions - and, if so, 1s there » goal constructing rule
'(rg) such that point X is conFained in the domain of rg {Dom rg) and such that
the range of rg (Ran rg) is contained in the goal, G?"

As shown in Scandura (1973), decision making capabilities can be charac-
terized as partitions on & class of input situations; in-—the present case, each
represent.ation (Sl, Rl) either contains a point X which satisfies two locus
conditions or it does not. If it does satisfy two such conditions, then the
next operation involves forming the rule consisting of (1) a decision whicl orke
whether there is gpoint X in the domain of rg which satisfies two locus
conditions, (2) the rule rg, and {3) a stopping decision which tests to deter-
mine whet:zr the output of rule rg (wvhen applied to point X plus perhaps other
entities) satisfies the goal G.

Next, the avallable rules in the lower order rule set are tested to see
whether there are two of them which apply to the represented stimulus (Sl) and
whether they generate loc¢i which contain the point X. Given that such locus
rules exist, the next operation constructs the solution rule R8 in which first
nne locus rule r, is applied (after testing to see whether the stimulus situa-
tion 1is in its domain), then the other Tivs and finally the goal constructinn
rule Ty (In actual applications of the higher order rule, it is assumed that
the problem solver automatically tests the solution rule Rs .to see if it gatis~
fies the higher order goal condition. That.is, is So € Dom Rs and Ran Rs‘: G.?
If the higher goal is satisfied, control is assumed to revert to the origimal

goal so that Rs will be applied.)
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A More Rigorous Analysis

This level of description is sufficient to give one an intuitive feeling
for how the higher order rule operates. But, unfortunately, the rule is am-
biguous; the decision making capabilities are not well defined. Ao they stand,
we cannot be sure, given a goal situation, that the higher order rule will
generate a unique output.7 In the first decision making capability, for
example, it is not clear just what constitutes a locus condition. Similarly,
in the second decision making capability the notion of a rule applying to a

stimulus situation is something less than precise.

Closer perusal of the individual tasks (Table 1, Appendix A) male it
possible to overcome these ambipuities. 1In many cases, the desired point X is
a given distance from one or two given points and/or lines. In the example
above (Task 1) the point X is a distance R from the given point and from the
given line. As a second example,consider the task, ‘‘Given side a, the median
Ma to side a, and the altitude “a tokside a, construct the triangle." In this
case, the point X is a given distance (Ha) from a given line (side a) and
another given distance (Ma) from a fixed point (the mid-point of side a). This
suggested the following morc rigorous characterization of the first decision
making capability: ,

(1) Does there exist a point X in (8;5 R;) and a rule T, such that
(X, E) is contained in the domain of rg where E is a given distance, and the
range of rg is contained in the goal (Ran rg C G) such that X 1is a given A
tance from one or two given points and/or lines.

Similar 'y analysis suggested reformulating the second decision making
capability'as: '

(2) 1Is there a rule r, such that a pair consisting of given points,

p is in the domain of T (Dom rL) and such that

avpoint on L) where L is contained in the range of

liunes, andfor distances in $
X is a member of L (i.e.
r (X e L € Ran rLz?

A similar characterizaticn is required for r

%

L'
A higher order rule incorporating these refinements can be used to gene~

rate solution rules for many two-~-loci: problems (e.g., Tasks 1-4 in Table 1).

For example, consider the problem mentioned earlier,'”Given a line, a point

L

7. Many two-loci#- problems, of course, do not have a unigue solution. Corres-~
pondingly, higher order rules could be required to penerate more than one
solution rule. There i¢ no motivation for doing so here, however, so we do

not consider the possibility further.
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not on the line, and a radius R, find a circle having the given radius R, which
is tangent to the line, and which passes through the point." There is certain-
ly a point X iu the represantation (Sl, Rl).wbich is éc the piven _digtance R
fron a given point and from a given line in Sl'

INSERT FIGURE 4 ABOUT HERE

It is elso true that there is an rg rule in the rule set (rc, Table 2, Appen-
dix A) which applies to the pair consisting of the point X and the given dis-

tance, and whose range consists of circles and is thereby contained in the goal.

Unfortunately, as it stands, the wodified higher order rule does not
provide an adequate means for characterizing solution rules for other two-loci -
tasks. In certain tasks (e.g., 8 and 9 in Table 1, Appendix A), for example,
no distance is given. The important requirement in such cases is often that
the point X be equidistant from a given pair of elements, points and/or lines,
in two different instances (i.e., for two given pairs of elements). Thus, in
the task, "Inscribe a circle in a given triangle,” the desired point X is equi-

distant simultaneously from two J.fferent palrs of sides of the triangle, or

INSERT FIGURE 5 ABOUT HERE

i e T e e T e S . e U s . . 4 7 e S i P e S O O o . s e e, W

equivalently, the point X is equidistant from the three sides. In the task,
"Circumscribe a circle about a given triangle,' the point is equidistant in.

regard to two pairs of points,

To take these possibilities into account, the first part of decision
making capability (1) must be modified to allow pairs consisting of the point X
and another element E, where E may be either a point or a distance. For exam-
ple, in the "circumscribed circle" task, any one of the vertices may serve as
point E. The goal construction rule, rg, involves determining the distance
between the two given points (X and E) and applying the circle construction

rule with the point X as center and the obtalned distance as rhe radius. Sinc-
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the point E in the "inscribed circle" task must be deteruined as part of the
goal construction rule, we see that E may not be given initially {in So) but

may have to be specified as ﬁart of rg.

This modified higher order ruie is generally more adequate,but still
breaks dovn in certain sitnations. In the problem, '"Given three intersecting
iines, not all intersecting at a common point, construct a circle which 1is
tangent to two of the lines and whose center is on the third,'" we have a situ-

ation where one of the loci, the line containing the point X, is already given.

INSERT FIGURE 7 ABOUT HERE

Here, the initial decision making capability (1) must be generalized slightly so
thét the desired point X may be a given distance from one point or line, or
equidistant from a pair of points or lines, and another given distance from
another point or line, or equidistant from another pair. This leads to'the fol-
lowing reformulation of decision making capability (1): (1') Does there exist
a point x in (Sl’ Rl) and a rule rg such that (X, E) € Dom rg where E is a point
or distance, and Ran rg C G, and X satisfies two specific conditions (or the
same condition twice, applied to different elements of (Sl, Rli) cf types:
X #s a given distance from a given point or line, and/or

X is equidistant from a given pair of points or lines?

A higher order rule incorporating these modifications appears in Figure 8.

——— — 4 o T i S e e S D R . oy e o s S P . o S e o

—— D - — i o o 1 o e o > e WD e 9y B e St S e S S S S e

Unfortunately, even this reformulation is not adequate with regard to
still other tasks, specifically tasks that involve the (lower order) rule for
constructing the locus of vertices of an angle of giQen meagure subtending a

given line segment (cf. rule r Table 2, Appendix A). The task, "Given side a

AV’

of a triangle, the median M,, and the measure of angle A opposifé side a, con-

a
struct the triangle,” is of "*. :vpe. One locus, in this case, is an arc but
the points on it are not at a fi...:i distance from any point on the gfvweorn cromilt
Nor are the points of the locus equidistant from any two particular points on

the line segment. Hence, in our final reformulation of the two-locus higher
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and a rule rg such that (X, E) € Dom rg where
E is a point or di?tance, and Ran rg(: G, and
X satisfies two specific conditions of types:

X is a-given distance from a given point or
line, and/or
X is equidistant from a given pair of points

or lines?
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y
2. Construct: To
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L
ting of given points, lines, or distances in Sl no STOP
is in Dom r;, and there is a locus L such that fail
X€LERanr? ' Also for r,,?

Pes
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( STOP
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order rule, the decision making capability is generalized so that the point X
may serve as a vertex of an angle of given measure whose sides subtend (i.e.,
pass through the end points of) a given segment. Decision making capability
(3) was also enriched so that pairs consiéting of angle measures and segments

could be in the domain of a locus rule.

With this modification, the rule set handled almost all of the pattern of
two loci tasks we;had sampled (Table 1, Appendix A). We ran into difficulty,
however, with another task: ‘'Given two parallel lines and a point between them,
construct a circle which is tangent to the two lines and passes through the
point." 1In this case, there is certainly a point X which is the same distance

\¥

-— s e i

INSERT FIGURE 9 ABOUT HERE

from a given point and from a given line so there is no problem there. Similax-
ly, there is a point E such that (X, E) is in the domain of some rg. The diffi-
culty comes when we get to the second decision making capability (3). Therc is
a pair of lines in the domain of one of the locus rules - the ome which con-
structs the locus of points equidistant from the two given parallel lines. The
second locus rule, however, requires that we first measure a distance between
two parallel lines, one of which is not present in the stimulus So until after
the first locus rule is applied. That is, we need -to determine the distance
between cne of the parallel lines and the locus of points equidistant from the

two glven parallel lines. This distance serves as the desired radius.

Application of the higher order rule in this case (Task 11, Appendix A)
results in failure at decision making capability (3). Fortunately, it is easy to
modify the higher order rule to take this possibility into account. Furthermor~
as we shall see, this modification serves an important purpose in dealing with
the larger class of construction probiems gsolvable either by the pattern of two

loci or by the pattern of similar figures.

Instead of stopping when the second decision fails, we simply add another
group of tests (A-C). (A) and (B) duplicate (1) and (2) except that X must
satisfy only one specific condition. (C) aska: 'Is there one rule in the rule
set such that a pair of given points and/or lines 'is in the domain of that rule
and is there a locus L such that the point X is part of L and L is contain~Z in

the ronge of rL?" If the answei to this is no, we stop, but if the answer is
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yes, we can ask whether there is another locus rule rL,'such that the represent-~

ed stimulus gituation Sl’ together with the preceding locus rL(Sl), contains a

pair of given points and/or lines that are in the domain of X

A revised higher order rule which incorporates this addition is shown in
Figure 10.

The Importance of Lower Order Rules

The rule set consisting of this higher order rule and the lower order
rules, provides an adequate account of all of the pattern of two loci problems
sampled, as well as others. For example, consider Task A: '"@Given sides a, b,

and ¢ of a triangle, construct the triangle." 1In this case, application of the

——— e e o e W0y e ——— s e O e e e

higher order rule generates the solution rule. This solution rule involves:

(1) application of rule r,., "Construct the locus of points at a given distance

C‘
from a given point," to the end point of one line segment using another side as

distance, followed by (2) another application of rule r, to the other end point

C

using the remaining side as radius. Then, of course, we apply rule r_, "From a

T,
point not on a given segment, draw segments to the endpoints of the given gesment -

to the intersection of these two loci to'obtain the desired goal figure.

Task B, '"Given two intersecting lines and a point of tangency on one of
the lines, construct a circle which 1s tangent to the two lines and which passes

through the given point of tangeney,” also involves the pattern of two loci.

s e o B e A . ot e e A B e e s S B e A T 8 B o B D D e B e e

INSERT FIGURE 12 ABOUT HERE

- - s 4 L Vot e B Sy T B e e B 0 o

Application of one lower order rule (r Table 2, Appendix A) constructs one

AB!
locus, the angle hisector. The second locus is obtained by constructing a per-

pendicular bisector to one line at the given point of tangency. This is
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followed by application of a circle rule (rc) to the intersection of the two

loci to construct the goal circle.

Originally, we had ﬁot explicitly included in our rule set a rule for
constructing perpendiculars to lines through points on the given lines, since
none of the problems originally sampled required such a rule. One could argue,
of course, that the needed rule is very similar to that involved in constructing
PR’ Table 2, Appendix A). But,

that would defeat the purpose of a rigorous analysis. To keep things complete,

the perpendiculer bisector of a given segment (r

we would either be obliged to add a new lower order rule or to add a (higher
order) rule which t;ansforms rules of the latter type into the former. More
generally, this illustrates taat solving new two-locil: problems may require the

addition of new lower order rules.
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Digcussion

Aside from the possibility that new two-locl problems may require addi-
tional lower order rules, the rule set appears adequate. In particular, the
higher order rule not only generates solution rules for each of the sampled two-
locl problems, but also seems compatible with human knowledge.

As the form of the higher order rule suggests, the component decision
making capabilities play a crucial role in deriving solution procedures for the
ptoblems.9 These decision making capabflities are designed to reflect the under-
lying semantics of the problem situations by referring directly to figural rep-
resentations of seﬁantic information implicit in the problem descriptions.

Those parts ¢f a figural representation (Sl’ Rl) indicated in solid lines rep-
resent the neaning of a task statement and reflect the relation between the
given stimulus (So) and the goal figure (Ro). Notice that while the relation
between S1 and Rl will be the same as between So and 'Ro, Sland l&will not in
general be the same as So and Ro,tespectively.

For purposes of our analysis, the decision making capabilities were view-
ed as atomic although they can also be analyzed into more basic components. The
first decision making capability in the second two loci higher order rule, for
example, involves both a conjunction and disjunction of a number of simpler con-
ditions. This decision miking capability could be subdivided, for instance,
into the following two decisions: (A) Is there a point X that is a given dis-
tance from a given point aad/or line? (B) Is there a point X equidistant from
a pair of given points or lines?lo Instead of having one decision making capabi-
lity involving conditions A and B, then, we could have one decision making capa-

bility involving A, and a subsequent one, B.ll’ 12

9. Initially, we had failed to appreciate the critical importante of decision
making capabilities in reflecting human knowledge, In our first attempts at
higher order rule construction, the various rules were tried pretty much at
random.. This would be fine if all people did was to randomly try out various
rule possibilities. But both our intuition and experience suggest otherwise.
Effective problem solvers frequently have rather sophisticated bases.for making
the rule selections that they do. We think that the above higher order rule
takes many of these capabilities into account.

10. We do not consider points equidistant from a point and a line. The loci
in this case are parabolas which are not constructible by straightedge end compass.

11. Por a discussion of how new decision making capabiiities are learned irom
simpler ones, see Scandura (1973).

12. Such refinement may be useful in the assessment of behavior potential
(Durnin & Scandura, 1972), specifically in increasing the precision of diagnos-
tic testing.
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Granting the adequacy of the higher order rule for purposes of our ana-
lysis, there are still some limitations in regard to the compatibility of the
lower order rules with human knowledge. These limitations are all variants on
a common theme: The lower order rules we have identified can be constructed

from more basic components. This fact is refleuted in at least three ways.

First, many of the simple rules have components in common. Several rules
(e.g., Tos rML’ Tprc® Tppe® rLLC’ Table 2, Appendix A), for example, all involve
constructing a locus of points (circle) at some distance from some point. The
differences lie in whether or not the distance and/or center points are given
directly or must be determined first. The construction rules needed to deter-
mine these distances and/or center points are quite basic and are apt to be use-
ful in a wide variety of construction situations. Any reasonable account, de-
signed to deal with a wider variety of problem situations, would undoubtedly in-

clude these construction rules directly in the rule set.

Second, certain of the identified lower order rules, particularly the
rule for constructing the locus of vertices of an angle of a given measure sub-

tending a given line segment (r Table 2, Appendix A), are complex in them-

’
selves and cannot automaticallyA:e assumed to be available to many problem sol-
vers.

A third limitation is closely related to the first and was mentioned
earlier: The lower order rules are to some degree specific to the tasks we
have identified. To some extent this may be unavoidable because there or: . .-
ways certain problems which require "trick' solutions. It would be desirable,
of course, to keep this to a minimum. In this regard, it should be emphasized
that the simpler the lower order rules the greater the problem solving flexibi-
lity.

One way to modify our rule set to handle these limitatiens would be to
‘reduce" the lower order rules into their components and, correspondingly, to
"enrich" the higher order rule by adding sub-routines for constructing the raeded

locus, and goal, rg, rules.13 Such a rule set would correspond to the type

I'L,

13. 1In evaluating alternative rule set accounts for a given class of tasks,
decisions must always be made concerning exactly how the computational load
should be apportioned to the higher and lower order rules. Any number of
alternatives exist; at one extreme, the lower order rules may do all the com-
putation, in which case a separate rule would be nceded for each type of
problem, and, at the other extreme, the comporent lower order rules may be of
minimal complexity with the higher order rule assuming most of the comprtati~nal
burden. The requirement of compatibility with human knowledge, of course, sub-
stantially reduces the number of plausible characterizations.
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of knowledge that a person just having been taught the basic construetion rules

would need to have in order to generate solution rules directly.

For exampie, consider the rule: 'Determine the distance between a given
point and a given line and then construct the locus of points at the obtained
distance from the given point.” This rule can bz divided into two subrules: (1)
"Determine the distance between a point and a line,' and (2) “Construct tha locus
of points at a given distance from a given point " (Also see e» Typ» Tpppe
Tiie T Table 2, Appendix A.) To compensate for the reduction in the latter case,
the higher order rule could be "enriched" so that more complex r, and rg rules
can be generated where needed. Specifically, instead of selecting a composite
rule directly when it meets certainr prescribed conditions, as we have done 30
far, we include in the higher order rule a simple sub-routine for combining com-
ponent lower order rules. Consider, for.example, application of the existing
two-locdr higher order rule to the task of inscribing a circle in a triangle.

In this case, the above rg rule 1s selected at the first decision making capa-
bility because its domain contains a point X which is some Jdistance (not given)
from a given line and its range (circles) 1is contained in the goal. A corres-
ponding sub-routine would Selecéﬁfﬁles untii one is found such that X ig in its
domain (e.g., the distance measuring rule (1)), and another {e.g., the circle
rule (2)) such that its ramge is contained in G. To make the search more effi~
client, it 1s natural to add the requirement that the range of the former be con-
tained in the domain of the latter. After the component rules have beén identi-
fied, the sub-routine would form the composite of these rules and, finally,
would test the composite against the condition in the initial higher order rule.

As attractive as this possibility might appear at first, a little thought
suggests its implausibility as a way of modeling: human knowledge. This can be
seen by noting that all geometric constructions with straightedge  and compass
are generated by just three basic operations: (a) using a straightedge‘(e.g.,
to draw a line, ray, or segment through two given points, or through one point,
or intersecting a line, étc.), (b) drawing an arc given a compass set at some
fixed radius, and (c) glven two points, setting a compass to the distance be-

tween thuse points.

As we have seen,many of the lower ofder rules (e.g., the angle vertices
rule rAVQ are really quite compléx. Requiring a higher order rule, designed to
~ reflect human knowledge, to generate such rules from elemental components is
unrealistic. It is unlikely that a subject who 1s only able to perform the

ERIC

IToxt Provided by ERI
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\three indicated operations above would .also have at his command a rather complex
and sophisticated higher order rule. The acquisition of such higher order
capabilities by naive subjects would almost certainly have to come about gradu-
ally through learning, presumably by interacting with problems in the environ-

ment. 14

PATTERN OF SIMILAR FIGURES

Three Classes of Similar Figures Problems

The pattern of similar figures problems were analyzed in similar fashion.
Again, we began with a broad sampling of problems from Polya (1962). (The nine
tasks shown in Table 3 of Appendix B . formed the basis for our anélysis.)
One of the problems identified was, ''Given a triangle, inscribe a square in it
such that one side of the square is contained in one side of the triangle and -
the two other opposite vertices of the square lie on the other two sides of the
triangle” . .. N:"y.' The second step was to identify a solution rule for
each of the problems. For the problem above the solution rule was, ‘Construct
a square of arbitrary size such that one side is contained in the side of the
triangle which is to contain the side of the goal équare, and such that one
vertex 18 on another side of the triangle. Draw a line through the point of in-
tersection of those two sides of the triangle and through the fourth vertex of
the arbitrary square. From the intersection of this line and the third side of
the triangle (which is the fourth vertex of the goal square) construcf a scogmont
perpendicular to the side of the triangle which is to contain a side of the goal
square. Complete the goal square using the length of the perpendicular segment
as the length of the sides.'

INSERT FIGURE 13 ABOUT HERE

——— -— ——

Analysis of the similar figures problems revealed three relatively dis-
tinct classes of solution rules. In the sample problem above, and in other

problems in the same class (problems 1-3 in Table 3, Appendix B), the solution

14, See the discussion following the treatment of the pattern of auxiliary
figures. -
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rules all involve first constructing a square of arbitrary size which is in the
same orientation as the desired goal square, and which meets as many of the task
conditions as possible. (Rules of this type for constructing similar figures
are denoted by rgs.) The second step in each solution rule uses two pairs of
corresponding points (e.g., A, A' and B, B') in the goal and similar figures
- (i.e., in (Sl, Rl) superimposed with the similar figure) to determine the point
of similarity (PS), and then, constructs a line (e.g., k) through the point of
similarity and a point on the similar figure (e.g., V) which corresponds to a
needed point (e.g., V') of the goal figure. (In Table 4, Appendix B, point of
similarity rules are denoted rPS') Finally, the obtained point on the goal fi-
gure (e.g., V') is used as a basis for constructing the goal square. {In Table
4, Appendix B, rules for constructing goal squares from obtained points or lines

are denoted r

csq*)
The second class (problems 4-6 in Appendix B) is well represented by the
problem, "Given angles B and C of a triangle, and the median Ma to side a, con~

1

struct the triangle."” The corresponding solution rules begin similarly by
applying a similar figures rule (r S) to two given angles to construct an ar-
bitrary sized triangle similar to the goal triangle, with medians, altitudes,

etc., as required. Then a modified point of similérity rule (rPS) is used to

— e e e e e e e e e e e e e D e B B B et . B S S B o
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determine the point of similarity (Ps,the vertex of the non-given angle), and to
construct the given segment (e.g., Ma), such that one endpoint of the segment is
the point of similarity, and such that the gegment coincides with the corres-
ponding segment in the similar triangle. Finally, a line is constructed,
through the other endpoint of the constructed segment (e.g., D), parallel to
that side of the similar triangle (e.g., broken line) that is opposite to the
pcint of similarity. The remaining sides of the goal triangle are obtained by
extending two sides of the similar triangle to intersect the constructed paral-
lel line. ‘

The solution rules for the third class of problems (tasks 7-9 in Appendix
B) differ in that the first step in each is to use an T rule to construct a
locus of points which contains a critical point,” spe¢ifically the center of the

goal circle. In the problem, "Given a line and two points (A and B) on the same




- 23A -

Figure 14




_2[;_

side of the line, construct a circle tangent to the line which passes through

the two given points," for example, the locus of points (L) equidistant from the - . .-

P
two given points contains the center of the goal circle. Also, the point of

similarity is the intersection of the locus and the given line. The second step

o et ol ot S e e e e S e it B ——— -——
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4g to construct a similar figure (circle,{cl), which satisfies part of the goal
condition. In our example, a circle is constructed, with center on the construct~
ed locus and tangent to the given line. Next, another version of the point of
simiiarity rule is applied; this time the point of similarity (PS) and a given
point on the zosal figure (e.g., B) 2re used to determine a corresponding point
(B') on the similar circle. Then, parallel lines (e.g., k and k'), involving
corresponding points (e.g., B'O and BO', respectively), are constructed to de-
termine the center of the goal circle. Finally, the goal circle is actually
constructed. (“The component rules in these solution procedures are detailed in

Table 4, Appendix B.)

The Characterizing Rule Set

The higher order rule shown in Figure 16, together with a set of ten

—_———— — —————— T —— ——— T — - T o — " O —
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additionai lower order rules (cf. Appendix B), provides a sufficient basis for
solving all of the sampled pattern of similar figures problems. Furtherﬁore, in
so doing, the'higher order rule appears to reflect the underlying semantic..

For exémple, let us see how a solution rule for the first illustrative problem
above (inscribing a square in a triangle) can be generated by application of

the higher order rule. The first dccision making capability (A) asks essentially
whether a point X is necded to serve as the center for a goal circle. As the
goal figure is a square, the answer is obviously no. Decision making capability
J then asks 1if there is a goal similar figure rule (rgs) which applies to rep-

resenting stimulus S, and generates squares that satisfy part (GS) o the g2al

1

condition (i.e., the range of rgs is contained in GS which in turn contains G -
O
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equivalently, anything which satisfies G, satisfies Gs’ but not necessarily con~
versely. The lower order rule, 'Construct a square in a triangle with one side
coincident with one side of the triangle and one vertex on another side of the

triangle" (rule r Table 4, Appendix B), satisfies these conditions so the

s
rule is retained :: indicated in operation K.

Decision making capability L asks two things: (1) Is there a point X,
which corresponds to a missing point X in the goal square? (2) Is there a rule
r8 such that the stimulus Sl’ supplemented with the point X (XUSl), is in the
domain of rg, and rg generates a goai-like figure (Ran rgC?G)? In short, is
there a point XS in the similar squarz which corresponds to a point X from which
the goal square may be constructed? Clearly, there is such a point XS and the
rule, 'Determine the distance from a point to a given line scgment and construct

a square with sides of that leﬁgth” (r Table 4, Appendix B), satisfies the

GSQ?
necessary conditions. Operation M forms the solution rule consisting of the two .

rules above (rssand r...),with the point of similarity rule (= Table 4,

GSQ”. PS’
Appendix B) between them.

To see hov the higher order rule works with the second class of problems,
consider the second illustrative problem above (constructing a triangle, given
two angles and a median). In this case, the answers to decision makiﬁg czpabi-
lities A and J are again'no and yes, respectively. Here, r__ is, "Ccnstruct a
triangle of arbitrary size using two given angles and add p;;ts coirrecgondl~:

given segments,' (rule r Table 4, Appendix B). The answer to decision making

ST?
capability L is'yes. There is a point X in the goal figure, the end point of

Operation M again forms the solution

median Ma’ which can be specified by Tpg:

rule (r o T

sT ° Tps ° Ter)t

Notice that the first two classes of problems involve the same path in
the higher order rule. FEach solution rule requires a goal similar figure rule
(rgé)’ the point of similarity rule (rps), and a goal constructing rule (rg\
The only difference is whether the goal and simllar figures are squares or tri-
angles, with all that implies for the particular rés and r8 rules required. 1In
short, this example illustrates how what may appear initially to be Lasicslly

different kinds of problems may turn out to have a common genesis.

- The third sample probleﬁ”(constructing a circle tangent to a given line
and passing through two givon points) illustrates the other path through the
higher order rule. 1In this case, if we knew the center (X) of the Adeeirnd ~f»n~ln

we could solve the task. Turthermore, this wissing point X is on a locvd, nanely
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the locus of points equidistant from the twc given points. Hence, we answer yes'
to decisicn making capabilities A and C and retain the circle constructing rule
PB* Table 2, Appendix A). Decision
making capability F asks if there is a rule (r? ) which applies to the stimulus
i

5, as modified by the output of the locus rule (i.e., K PB(S }J). Condition
F is satisfied by a rule (r

(r ) and the perpendicular bisector rule (r

sc’ Table 4, Appendix B) that generates circles with
centers on a given line (the locus) and tangent to another given line. The
answer to the decislon making capability H is also yes. The two given points on
the goal figure obviously correspond to two points on the similar circle. By
operation I, the solution rule follows directly: ‘''Construct the locus >f points
equidistant from the two given points {rL = rPB); construct a circle with center
on that locus tangent to the given line (rgs = rSC'); apply the point of simi-

larity rule, and then the parallel line rule (r 'rLL) to determine the center

PS,
of the goal circle; comstruct the goal circle using this center and the distance

between it and a given point as radius (rg = rc):

It should be noted that in one of the gdmpled tasks (Task 9, Table 3; Ap-
pendix B) the "locus" is given. The casiest way to handle this special case is
to simply add an identity locus constructing rule. It would aiso be a simple
matter to modify the highezyrule to take this possibility into account by asking,
prior to or at decision making capability C, whether there is a line in S1 which
contains X. Clearly, similar additional modifications might have been called for

had we not limited our analysis to the sawpled problems.

Combined Rule Sets for Two~Loci and Similar Figures Problems

It would appear from our analysis that a rule set consisting of the lower
order rules associated with the pattern of two loci and similar figures problems,
together with the two higher order rules, would provide an adequate basis for
solving the sampled problems and others like them.  Indeed, there are two pos~
sible modes of solution in the case of one similar figures task (Task 1, Table 3,
Appendix B): "Inscribe a square in a right triangle so that two sides of the
square lie on legs of the triangle, and one vertex of the square lies on the
hypotenuse." 1Instead of using the pattern of similar figures, as illustrated in
our first example, the pattern of two loci rule can be used to construct the bi-
sector of the right angle. The intersection of this locus with the hypotenuse
(the other locus) is the "missing point” X and provides a sufficieant basis for

constructing the goal square (by r in Table 4, Appendix B).

GSQ
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Although it is not always critical to distinguish between different modes
of problem solving, any complete account must specify why one mode of solution
is to be preferred cver another (cf. Scandura, 1973, Chapter 8). In the present
case, there are two possible ways of handling this. First, we can add a higher
order selection rule to the rule set which says simply, if both higher order
rules .apply,15 select the pattern of two ioci. The rationale is that the pat-
tern of two loci rule will generally yield a simpler method of solution.

A second way to handle the problem is to devise a single higher order
rule which cecubines the advantages of both higher order rules. The higher order
rules in Figures 10 and 16 can be combined to yield the higher order rule de-
picted in Figure 17. The path in this higher order rule designated (1,2,3,4)

- e s O B v - o -

INSERT FIGUFRE 17 ABOUT HERE

corresponds to that path of the two loci higher order rule which deals with those
cases where the two loci may be found in either order. The path (1,2,3,A,B,C,D,
E,4) deals with those two-loci problems where one locus must be found before

the other. The other two paths correspond to the similar figures higher order
rule.

15. Such a selection rule presumably would center on conditions for distin-
guishing between problems according to which higher order rule(s) can be used
to generate a solution rule. Although we shall not attempt to specify such
conditions precisely, it would appear that the availability of two locus rules
containing the missing point X (cf. decision making capability 1) would play
a central role.
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Figure 17
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PATTERN OF AUXILIARY FIGURES

Not all compass and straightedge problems can be solved via the pattern
of two loci or the pattern of similar figures. In this section, we describe a
higher order rule for dealing with the third class of problems identified by
Polya (1962), the pattern of auxiliary figr.es. We also show how the combizzd
rule set, developed in the previous section, may be extended to account foy

essentially all of the constructibn problems identified by Polya (1962).

Auxiliary Figures Higher Order Rule

Our initial analysis was based on a sample of five auxiliary figures prob-
lems (see Table 5, Appendix C). One of the problems used is, "Given the three
medians of a triangle, construct the triangle."” (The additional lower order
rules required for the auxiliary figures problems are given in Table 6, Appendix
c.)

+  The analysis proceeded as before. First, we identified a procedure for

- . -

"solving each problem, Then, we looked for similarities amomg Ll zcl_ll_.. _.7l.

and idemntified the component rules invoived. 1In general, the required goal fi-
gures were not constructable via either the two loci or similar figures higher
order rules. However, in each case the goal figure could be obtained from an
(auxiliary) figure that was constructable from the given information. In the
problem above, for example, a triangle can be constructed Irom segments one-
thifd the lengths of the given medians. The goal figure is obtained by extending
two of the sides of this auxiliary triangle to the respective median lengths and
drawing lines through the resulting endpoints.

The analysis resulted in the auxiliary figures higher order rule showmn

s s et et B e et B e S e e S . S e i D T S S . 4 A VS s et P S R i o e

INSERT FIGURE 18 ABOUT HERE

—— T . —— . — Y ——- -

in figure 18. This higher crderlrule generates a solution rule for the {llweer-
tive task above as follows. First, an arbitrary representation for the solved
problem (Sl, R1> is constructed. In this case, an arbitrary triangle is

"gketched," and its medians are represented on it, as shown in figure 19.

- i —— . —

INSERT FIGURE 19 ABOUT HERE
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Figure 18
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Figure 19
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The first decision asks whether there is (1) an auxiliary figure, and (2) a
rule rg which operates on the auxiliary figure and generates the goal figure.
In this task, there 1s such an auxiliary figure (1ndicated in Figure 19 by the
broken line), a triangle having sides omne~third the lengths of the given me-
dians.16 In addition, the rule, '"Extend the constructed segments to their given
lengths and draw lines through their endpoints " (rEG’ Table 6, Appendix C),
satisfies condition (2). The next decision (III) asks whether or not a point is
needed, in addition to the auxiliary figure, to construct the gosl. Here, the
answer 18'no’; no other point is needed. Finally, decision IV asks if there is
an auxiliary figure comstruction rule (r,) available whose domain contains S,
(S1 € Dom ra) and whose range contains the auxiliary figure (i.e., Ran r, ©
{A]A 18 1ike AUX}. In this case, the rule, "Construct a triangle from segments
one~third the lengths of three given medians (rMT’ Table 6, Appendix C), satis-
fias these conditions and operation V constructs the solution rule, "Construct a
triangle having sides one-third the length of the given medians (rMT); extend
two segments of the constructed triangle to the respective median lengths, and
draw lines through the endpoints of the medians to construct the goal triangle
{rge)-

The other path through the higher order rule may be illustrated using
the task, "Given the four sides a,b,c,d of a trapezoid (a < ¢), construct the

trapezoid." Again, the answer to decision I is''yes’. (Where the answer is no’,

INSERT FUGURE 20 ABOUT HERE

the higher order rule faiis.) The trianzle with c-a, b, d as side . serves as

the auxiliary goal figure and the goal rule, "Through cormer points of an auxil

liary figure and through another point not in the auxiliary figure, draw seg-
ments to complete the goal * (rAXP’ Table 6, Appendix C), is .elected. Unlike
the first path, however, the answer to decision III is'yes”since the goal rule -

'(rg) acts on pairs ( > |y AUX) consisting of an auxiliary figure and a critical

point X.

16. We do not attempt to spell out the procedures necessary for finding auxi-
liary figures. However, in all of the sampled auxiliary figures problems, it
was necessary to construct a line parallel to some 'distinguished"” linc. Lz~
some "distinguished" point not on that line. Such procedures also frequently
require special knowledge ~ for example, that medians intersect at a common
point that is 2/3 of the distance from the respective vertices to the midpoint
of opposite sides. Such knowledge i8 frequently logically deducible, but for
our purposes, may be represented in terms of simple "'associations' -~ for ex-
ample, between triangles with their medians and the common intersection pro-
perty.
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Figure 20
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The next decision (IV) asks if there is a rule r, that constructs the auxiliary
figure from given information. This condition is satisfied by the r, rule which
constructs the auxiliary triangle from the sides of a trapezoid (Rule rTT’
Table 6, Appendix C). Decision VIII asks whether there are two locus ruies

(rL and rL,) which apply to the auxiliary figure and/or other given infozmation
(Sl) and whose ranges contain X. The circle rule (rC), applied to differenz
portions of S, U AUX, plays the role of both locus rules. The solution rule

(Operation IX).rT is a concatenation of the component rules.

t Tc-Tc Taxp
> BT - TR

Combined Two-Loci, Similar and Auxiliary Figures Higher Order Rule

Taken collectively, uhe three rule sets described above (including the
higher order rules) account for a wide range of geometry cinsttruction problems.
Furthermore, the rule sets appear compatible both with human behavior and with
the heuristics originally identified by Polya (1962).

" This is not meant to imply, however, that the three higher order rules
are unrelated to one another. Both the needed point X in the pattermn of two
loci, and the similar figure in the pattern of similar flgures can be regarded
as special auxiliary figures. Indeed, one could modify the auxiliary figure
higher order rule so that it, together with the relevant lower order rules,
would account for all three classes of problems. In addition, the similar and
auxiliary figures higher order rules may be viewed as progressive generaliza-
tions of the two-loci nigher nrder rule. It is not difficult to conceive of
third level higher order gemeralization rules which have the two loci higher
order rule and a similar or auxiliary figure as inputs , and a more gemeral
higher order rule.in which a gimilar or auxiliary figure 1is substituted for the

missing point X, as the corresponding output.

Alternatively, the combined two~loci, similar figures higher order rule

(Figure 17) can be extended to include auxiliary figures. 1In fact, the extetded

s s e e e s P L e e e D e e s e e e N e i e P e D M et e e S 4 e

e 1 e g e i e i o e e (o e B i D S S e S T D et S A el O B e

higher order rule depicted in Figure 21 allows recursion on the hdghen i .
order rules. To see this, notice that the higher order rule shown in Figure 18
tan terminate at several points without finding a solution rule. In some prob-
lems this is unavoidable; there may not be an auxiliary figure from which the

goal figure car be constructed. Sometimes, however, there is an auxiliary



~ 30A -

START ~
Figure 21

Sy

Construct representative ( Sl, Rl_)pgir

o
N
n STOP
fail
y
II.
n
K.
n
y
1 M.
v J. 3

3

o. Is there an AUX € Ran RB such

zhat AUX € Dom rg?

-,

n

-

C

’ STOP
Solution Rule is Rs




- 31 -

figure, but one which is not directly constructable from the given information.

Such auxiliary figures can often be constructed via the pattern of two-loci,

the pattern of similar figures, or the pattern of auxiliary figures itself. In

those cases where such an auxiliary figure exists, we allow for this possibility
by returning control to the start of the combined higher order rule in order to

derive an r, rule for constructing the auxiliary figure. Once an auxiliary fi-

gure (ra) rule - has been derived, the original procedure resumes.

To see how this higher order rule works, consider the following task,
"Construct a trapezoid given the shorter base a, the base angles A and D, and
the altitude Ht."

- - @ i e

o o — e 8 ot e @ e =

As in the trapezoid example given earlier, the needed auxiliary figure is the
triangle having sides c-a, b, and d. But, this triangle is not directly con-
structible from the given information. None of the assumed lower order rules is
adequate, so the higher order rule breaks down at step VI, The flow of control
therefore returns to step 1 with the aim of comstructing the auxiliary figure.l7
Beginning here, the problem of constructing this auxiliary figure is a straight-
forward similar figures task, one in fact which we had sampled (Task 5, Table 3,

Appendix B).

The higher order rule of figure 21 also generates solution rules for even
more complex prodlems, provided we assume the necessary component rules. For
example, consider the problem, "Given three noncollinear points A, B, and C,
construct a line XY which intersccts segment AC in the point X and segment BC
in the point Y, such that segments AX, XY, and YB are all of the same length,"

———— - -

INSERT FIGURE 23 ABOUT HERE

It is instructive to consider the derivation of the solution rule for
this rather difficult broblem in some detail. Three recursions are re-
quired.

(I) The answers to decisions 1, A, and J of the combined higher order
rule are all‘no., Hence, control goes to decision I. At decisicn I, the seg-
ments XZ and 2B in Figure 23 can be identified as an auxiliary figure. (This is
equivalent to, but less convenient than, using rhombus XZBY.) Operation II

-~

17, This involves memory and is not indicated in the flow diagram.
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Figure 22
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denotes a lower order rg rule which can be used to construct the rest of rhcmbus
XZBY (i.e., construct the goal figure, AX = XY = YB) from S1 supplemzated with
XZ and ZB (S1 U XZ & ZB). The following lower order rule would be both adequate
for this purspose, and useful in other situations: 'Given two fixed sides of a
parallelogran (or two sides and the angle oetwzen them),construct the parallel-
ogram.'

The answers to decisions IZf and IV, however, are'no. Decision IV, in

particular, asks if there is an r, rule which operates on S1 and generates an

A
appropriate pair of segments(iz and ZB). There is no such lower order rule among
those we identified: we could add one, but any such rule would be extremely

complex 4nd rather unnatursal (i.e., highly specific to the problem).

(1D Insf. ad, the auxiliary figure plays the role of goal and contrsl re-
turns to the start of the procedure. ™t=2t 1s, on this loop the aim is to derive
an rule for constructing the requirec auxiliary figure (pair of segments).

As before, the answers to decisions 1 and A are’no,but the answer to decision J

depends on what lower order rules are available. If segments X'Z' and Z'B' can
be constructed directly, we go through decision L where for our purposes we
assume that the answer is’yes. Control then goes to question =35 ''Is there an
auxiliary figure in the range of the solution rule (AUX € Ran Rs) sdch th=t fhe
auxiliery figure (segments XZ and ZB) is in the domain of an rg rule (AUX ¢

Dom rg)." Since the rhombus constructing rg rule above_iatisfif? thic -cpAse
‘control flows to decision III which refers to segments XZ and 2B and where the

answer is'no. Decision IV refers again to the availability of a rule for con-

structing XZ zod ZB from X'Z' and Z'B'. This was assumed at decision L so the
answer is'yes. After getting a no’at decision %, the solution rule is formed

by combining the derivations obtained on each loop.

(fii) If, on the other hand, at decision J the similar figure (i.e.,
segments X'Z2' and Z'B') cannot be constructed directly, a third loop may be re-
quired. For example, control goes to decision I where the answer is"yesﬁ The

point Z' is a degenerate auxiliary figure from which it is reasonable to assum:

that the uiﬁilar figure X'Z' and Z'B' may be constructed. Suppose, however,
that the answer to decision IV is“no’, 1In this case, we start over again with
what amounts to a two-loci problem. The answers to decisions 1 and 3 this time
are"'yes. A circle rule (applied to X'as center) and a rule for constructing

parallel lines (e.g., X'Z') serve as locus rules r, and r The circle rule

L L'
also serves in the rg role to complete the goal (similar) figure K op'-- ~%*~ »*=




- 33 -

it is applied to Z' as center. From operation 4, of course, we go to decision
<< and complete the derivation as before. This time, however, we go back through
the loop from decision III to decision :< twice before forming the final solu-

tion rule.
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DISCUSSION . o

Summary

. In summary, a quasi-systematic methed for devising rule-based accounts of
problem solving was proposed and illustrated with compass and straightedge con-
structions in geometry. Higher order rules, together with corresponding sets
of lower order rules, were constructed for the two-loci, similar figures and
auxiliary figures problems identified by Polya (1962). First, rule sets were
constructed to account for a broad sampling of two-loci problems. We saw how
decision making capabilities (decisions),and particularly, how the conditions
used to define decisions play a central role in higher order rules. Among other
things, these conditions insure that derived solution fules satisfy the respec-
" tive higher order goals - equivalently, that the higher order rules are deter-

ministic relative to the higher order goals.18

Separate rule sets were similarly constructed for the similar figures
and auxiliary;figures problems. We also showed how the two-loci and similar
figures highef order rules could be combined to form one higher order rule, which
together with the lower order rules provides a basis for solving both kinds of
problems. Finally, a combined two-loci, similar and/or auxiliary figures higher
order rule was constructed, This higher order rule allows recursive: retutn~ «~ «'
components of the higher order rule, corresponding to the individual higher'or-
der rules, and was considerably more powerful than the others. 1Its use on scme

complex problems was illustrated.

proviggerall, the analyses demonstrated the viability of the analytic method
and further evidence in support of the competence theory on which it is based.

In particular, the form of competence theory proposed by Scandura (1971, 1973),
in which rules operate on rules, places constraints on the kinds of rule sets
possible and, correspondingly, on the methods which may be used to construct
them. The higher order ruies identified were precise, compatible with the heu-
ristics identified by Polya, and intuitively seemed to reflect the kinds of '

relevant knowledge that successful problem solvers might have.

The central role playved by semantics in the analysis should be emphasized.
The meaning of each task was represented by a goal figure (Sl, Rl) representing

both the goal object (Ro) and the given information (So). The relations among,

R

18. This feature has the important advantage of avoiding false starts requiring
backup capabilities within given (higher order) rules (cf. Minsky & Papert, 1972).

ERIC

IToxt Provided by ERI
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and properties of, the elements of these figures, together with the domains and
ranges of individual rules, were reflected directly in the higher order rules.
Although littie attention was given to the formal ~epresentation of semantic
features, the goal figures clearly placed powerful constraints on the rules
selected at each stage in applying the higher order rules. Representation in
terms of some arbitrary (e.g., random) syntax, unconstrained by goal figures,
would have necessitated backup capabilitiesl8 and, in principle, could easily
increase the - umber of possible construction rules at each stage beyond any
reasonable computational capability. That is, without the constraints imposed by
the goal figures, the number of possible points, arcs, an? lines that might be
constructed could be almost unlimited. The cffect of using goal figures is very
much the same as that referred to by Winston (1%$72) in s recent paper on vision,
He argued that although the number of combinatorizally possible arrangements of
vertex types (Guzman, 1968) is very large, the number of types that yield real

figures is much smaller.

Limitations.

In spite of these advances, ¢he present study has certain limitations
which, in principie, and on the basis of the existing theory of structural 1earr
ing (Scandura, 1973), could be overcome. First, all of the higher order opera-
tions were limited to compositions of rules. In future research, more attention
should be given to other kinds of ope:ations. Generalization, restriction, and
selection rules (Scandura, 1973), for example, might well be expected to play an

important role in problem solving.

There are a varietvy of ways in which such rules might enter. (a) In
discussing the two-loci higher order rule, we have already seen how the scope of
a decision (making capability) may be generalized to generate solution rules
for a4 broader range of problems. In particular, we saw how the first decision,
which wz; initially restricted to situations where the desired point X was a
given distance from two given points, could be generalized, for exampie, te =llow
the point to be the same distance from two given points. It is not hard to en-
visage a generalization rule by which this shift might be made (see Scandura,
1973). The relationships observed previously between the missing points ¥ -2l
the similar and auxiliary figures, suggest another kind of generalization in-

volving the identified higher order rules.

18. See féo?"ﬁte 18, page 34.
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(b) There are a wide variety of construction problems which might require
the independent derivation of more than one missing polnt X, similar figure, or
auxiliary figure. As a simple example, consider the task of conmstructing two
circles, one of which is to be inscribed in a given triangle and the other, to
pass through its vertices (i.e., to circumscribe the triangle). In this case,
the probleu can be solved by applying the two-loci higher order rule twice. The
higher order derivation rule here can be thought of as a generalization of the
two-loci rule in which two or more applications (i.e., recursions) may be allowed.
One can easily conceive of a simple higher order generalization rule which ope-
rates on rules and generates corresponding rules which are recursive. The com-
bined two-loci, similar and auxiliary figures higher order rule is one possible

consequence of applying some such higher order rule.

(c¢) If we had allowed unsclvable variants of the problems considered,
truly viable solution rules would have to be appropriately restricted. The so~
lution rule for 'constructing a triangle with sidés of predetermined length,"
for example, works only when the sum of each pair of sides of the triangle is
greater than-theithird. A compléetcly adequate solutipn rule would have to tori
this possibility. 1t is possible to conceive of higher order rules, which ope-
rate on rules of various kinds together with special restrictions (e.g.,, the

triangle inequality ) to generate correspondingly restricted rules.

(d) It is also possible to conceive of three dimensional analogues of
compass and straightedge constructions. In this case, the higher order rulec
would operate on the usual two dimensional construction rules and would generate
their three dimensional analogues. For example, a rule for constructing the
locus of points equidistant from a given line (i.e., a pair of lines) corres-

ponds to a three dimensional rule which constructs a cylinder about the line.19

A second p:jor limitation derives ' ~“~m the underlying theorv assumed.
As we saw in the introduction, this theory has been tested empirically and pro-
vides an accurate account of behavior to the extent that memory is not a factor
(i.e., to the extent thkat all ¢f the necessary rules are readily available and

can be checked for applicability (e.g., pattern matched) within some reasonable

19, Implicit in the above examples is another limitation to which we have indi-
rectly referred previously. Our original analyses were limited almost exclu-
sively to single higher order rules. In no case did we attempt to identify
rules which may operate on higher order rules, although our examples make it
clear that we could have done so. The problems invelved in accomplishing this
would be practical rather than theoreticzal.



predetermined period of time.) Hence, all of the lower order rules nceded in each
derivation had to be explicitly included in cur anzlysis. This necessitated
inclusion of a number of rather complex lower order rules (e.g., the locus »f

vertices of a given angle subtending a given segment) .
i

Earlier, it was shown that this problem could be overcome by building
subroutines into the higher order rules to construct complex lower order rules
as needed. We rejectad this alternative, however, as it led to rather complex.

and.to some extent,unnatural higher order rules.

Fortunately, an as yet untested but reasonable theoretical mechanism does
exist which effectively overcomes this limitation (see Scandura, 1973, Chapter
10). ©Essentially, this mechanism allows control to shift automatically among
goals in a somewhat more general fashion than is assumed in the memory free
theory. In particular: (a) If a subject does not have a rule available for
achieving a desired goal, control automatically shifts to the higher order goal
of selecting a rule for deriving such a procedure. (b) If a rule satisfies a
higher order goal but depends for its application on some rule in its domain,
which is not available, then control automaticall& shifts to the domain goal. of
selzcting a procedure which generates the neceded lower order (domain) rule.
fc) Once a dcmain goal has heen satisfied, confrol reverts to the goal from

which control was diverted. (d) CEverything else is as before.

Instead of building subroutines directly into higher order rules, thern,
these assumptions allow for the derivation, by independent higher order rules,
of needed lower order rules. For example, suppose in applying the two loci
higher order rule that a subject has identified a missing point X, but that his
lower order rule set does not contain one of the neecded locus rules (e.g., the
locus of vertices mentiored above). According to the extended hypothesis, con-
trol shifts to tﬁe domain goal of deriving the needed locus rule. Once this
goal has been satisfied, control reverts to the original (higher order) goal of

deriving a solution rule.

It is not necessary to6 incorporate either goal shift into the higher or-
der rule itself. 1In the theory, this is assumed to take place automatically.
Obviously, such a mechanism, if reflécted in human behavior, would greatly in-
crease the power and scope of applicability of the rule sets we have identified.
In effect, fewer constraints would be imposed on the manner iu which the indi-
vidual rules may interact in sodving problems. As we shall sce shortly, howcver

<’
’ .



- 38 -

these constraints are far from idlosyncratic as is the case in many present
artificial intelligence systems; they are presumed to be fixed once and for
20
all.
A third major limitation of this research is that the cumulative effects
of learning were not considered. Although it is clear that newly derived rules
are to be thought of as automatically added to existing rule sets, each problem

in our analysis was considered as de novo (relative to the given rule set).

" As discussed above, this necessitated the inclusion of a number of fairly com-

plex rules in .- our basic sets. Furthermore, 2nd in many ways more important,
such characterizations tend to lack flexibility. The atomic elements are so
large, relatively speaking, that there are many intermediate level problems that
cannot readily be solved using such rule sets exclusively. Also important from
the standpoint of behavioral analysis, it is doubtful that such lower order
rules would adequately reflect the knowledge had by most subjects assumed to
know the identified higher order rules. Such subjects would almost certainly
also know a wide variety of simpler construction rules, even though we have not

explicitly included them in our rule sets.

An altermative which should be pursued in future work is to begin ini-
tially with rule sets composed of simpler rules, and to allow these i1ule sets
to grow gradually by interacting with a problem environment.21 In the present
case, only threc atomic lower order rules would be needed: (a) setting a com-
pass to a given radius, (b) drawing a straight line (segment), and (c) using a
set compass to make a circle. It is not immediately clear what the higher order
rules should be but, presumably, any reasonably satisfactory rule set would in-
clude simple composition, conjunction, and generalization higher order rules,
together, possibly, with variants of the two loci and other higher order rules
identified above. It should be emphasized in this regard that the initfal sclec-
tion of rules would not in itscif be sufficient; the choice and sequencing of
problems may also be expected to have important effects on both the rate and
type of knowledge acquisition. As this paper goes to press, plans are being made
to develop this approach with compass and straightedge constructions, including

computer impleiuentation.

20. An ecxperimental test of this mechanism is being planned as this paper goes
to press.

21. Such rule sets have been called innate bases (Scandura, 1973, Chapter 5).
In general, innate bases lack the immediate, direct computing power of compar-
able rule sets corposed of more complex rules but, theoretically at least, can
grow to become more powerful,



IMPLICATIONS
In additicn to strictly epistemological considerations, this research
has important implications for work both in simulation and artificial intelli-

gence, and in educaticn.

Artificial Intelliigence.

There are at least three ways in which this‘rescarch, znd particularly

the underlying theory, might influence artificial intelligerice research.

First, the results are suggestive of how the construction of at least

ccrtain arcificial iatelligence systems might be partlaliy systematized. In

this regard, the topic of compass and straiglitedge constructions is not nearly

as important as is +*ha fact that it serves as a prototype for the proposed

method of analysis. At the present time this method is being used to aralyze 3hw»
the proofs containcd in an experimental algebra I high school text based ou

axiomatics.

Second, the fact thkat the la&s which goevern the interactions awnong indi-
vidual rules are assumed to be fixed once and for all has important impliications
for computer implementation. In particular, the fixed mode of interaction
would make it poscible to modify and/or to extend an artificial intelligence
systen rule by rule, without having to worry about the effects of these changec

on cothei par’s.

One of the major difficulties in current artificial intelligence research
is thzt even minor cnanges in one part of a system may have unpredictable ef-
fects which rmay require compensating changes elsewhere. The switch to heterar-
chiczl systems (e.g., Minsky and Papert, 1972) in which control may shift among
individual programs in some precdetermined manner, does not alleviate this prcb-
len. In contrast to the ubove mechanism, the mode of control in heterarchical
systens may vary from system to system,. . Qarse,from the standpoint of de-
bugging, may interact with the individuzl programs themselves. 1In short, the
important point for artificial intelligence research is the potential advantage

for inplementation cf 2 fixed mode of interaction.

Whether or nct the mode of interaction is restricted to that propeosned




here 1s not the most crusiai puinb.zz n the assuwaption that artificial intel-
11gengg_research might benefit, by taking azcount of such'mechanisms, psycholo-
gicaliresearﬂh aimed at discovering what these interactions are, under various
behavioral Lounda*v corditions, would appear to be a first ordei of Business.
Research related to the_extendéd'mechanism outlined above, or to an even richer

theoretical mechoniem which fully incorporates memory (see Scandura, 1773,

Chapter 10), would-seem pariicularly timely: .
" The implications of tne proposed aechauism are in o way limited to
pragmatic cousiderations of system development. A third major 1mplica:10n is
that thé proposed mechanism providzs an explicit basis for learning. As new
prcblems are sdlved, new (solution) rules are addad %o tha;knowlédge base.
Vhile keeping in mind the possiblc limitations o the propose:l learning wmechn--
niso indicated‘abové, this mode of representat ion (i e., rule sets plus m,cha—

nism) has a number of basic advantagns not shared by the ﬂo*e familiar stoie~

c
space ropresentations 0 problen soiing that have beca so widely uecd ip oxii-
ficial intelligence research (Nilszor, 16G71). Lr>p~r:1vu1“L, attempts to deai
with learnihg'using sto Le—spuvc repres ntations huve bezn vniformly ungatisfac—
tory. » '

Althounh baving noth g directly to do with the learnin mechanism, the

=0

successful use of flow diagrammln, as a hode cf repraer Latiou ol individunT
rules suggests that perhaps such rerpresentatica might play a somewhet larger
role in the erp ogiticn of future artificial intelligence wesoarch. The routine
‘"use of a larg: nunber of differcat and kiraiy to chnical’ programn.ﬁg languages
is often erough to furn away cu‘siu="s who night cthervise be dnterested. Uhe
limitatioﬁs.of fléw diagra:s'wi:h apard o mercry cons? iderations are a.smell

rice to ay for & mero reutral and famlliuL ra o rehrescntation. Turther-
" ) ot ] i . y N

more, floyw dizgrams have a'flexibility as to level of ropresentztion which is

-t

~—_—

« . Tnot shazes by particulop ptugrammingllcnguéges. ’This mikes it possiblg—ﬁo'mofgw
readily reprcsenli basic cemponents at a level of atomicity tailored to immedizte
needs, and o psychological reality_(cf{Sccndufa, 1973); rather than to basic
componeﬁts datermived by soae progr;r:ino Tauﬁcage.' Thesc'comvgnts; of courue,
apply only to psychnlogical and cxpogitory cousiderations and éay nothirg of the
more strictly technical problcus of representaticu which nust be dezlt with in

computer implcmentations.

22. To be sur2, earlier research has shown that such a mechanism, a5 rclatively
simple as it in, provides an a~curate ncccrat of actual human problem solviag
beliavior under memory frco condiftions. In huait*on, the above analyses siow
that this mcchaniea suffices for cuelyzing sone yvsther complex claszes of proli-

EMC lems.

Ml A v 7ext provided by R
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Education .

The results of this study have both long range and immediate implications
for education. The promising nature of the results attests to the practicabili-
ty of the proposed approach as a means of identifying the knowledge underlying
reasonably complex kinds of problem solving. 1iIn addition to serving as a pro-
totype, the identified rules themselves could be helpful in teaching high school

students how to solve compass and straightedge construction problems.

By identifying precisely what it is that students must know {(i.e., one
possible knowledge base), these rules pruvide an explicit basis for both diag-
nosis and instruction. 1In particular, the methods of analysis formalized by
Scandura (1973) and developed empirically by Scandura and Durnin (1971) and
Durnin and S:iandura {1972) can be applie: directly to assess the behavior poten-
tial of individual subjects on the individual rules, including the higher order
ones. Operationalizing the knowledge of individual subjects in this way, and
comparing this knowledge with the initial competence theory (i.e., set of rules),
provides an explicit basis for remedial instruction (Durnin & Scandura, 197Z).

In effect, each subject can be taught precisely those poftions of each compe-

tence rule which testing indicates he has not mastered.

Although no special claim is made for the identified lower order rules,
care was taken to help insure that the higher order rules reflect the kinds of
ability individual subjects might have, or use. To the extent that the identi-
fied higher order rules are unknowu to high school students, instruction in
these rules ought to facilitate problem solving performance. A field test of
the efficacy of these higher order rules is now underway and will be reported in

due time by Ehrenpreis and Scandura.

The above discussion of how knowledge is acgulred through interaction of
the learner with a problem environment also has educationzl relevance. Speci-
fically, by assigning values to varicus objectives and costs to particular kinds
of instruction (or rules), it should be possible to study the prchlem of instruc-
tional sequencing and optimization in a way which is both precise and relevant
to meaningful education. We view this as a critically important problem for

future research.
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APPENDIX A

Table 1

Two Loci Problems and Solution Rules

-~

Task 1. Given a line and a point not on the line, and a radius R, find a circle

having the given radius R, which is tangent to the line and passes through the

point.
/f'”-“ " Rule 1. Construct the locus of points at
-~ J " '
T~ distance R from the given point (rb)l;
O S
T~ )# ~ construct the locus of points at distance
\\\\\\:*MPA—’// h R from the giver line (r finally apply

~__ pL) 3

\\\\\\ rC, using the intersection of the two loci

as center and the distance R as the radius.

Task 2. Given sides a and b of a triangle and the median Pg to side a, cons*ruct

the triangle. =

P T
\\'\ N
/\ \" Rule 2. Construct the locus of points at
\ N
b My 5 distance b from one end point of the line
Y segment a (rc?; find: the ‘midpoint of-side a

and apply r. using the mid-point as the cen-

C
a ter and Ma as the radius; draw segments from
the point of intersection to the end points

o33 .
vi 3ide a (rT)

Task 3. Given side a of a triangle and the median b% to side a, and the height
Ha to side a, contruct the triangle.

Rule 3. Apply rPL using segment & ana tne

? - - — = 7*-<—* — = distance Ha; find the mid-point of segment
A‘ //////;/\\<, a and apply e using the mid-point of a as
a M \
! //// 2 Tq center and Ma as radius, and apply Top using
a the intersection point and side a.
O 1. The subscript. letters refer to Table 2, a list of component rules.
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Task 4. Given two intersecting lines and a radius R, crnstruct a circle with
radius R tangent to the two given linmes.

Rule 4. Apply ToL using one line and the

distance R; apply rPL

and distance R; apply r, using the inter-

using the other line

section as center and R as radius.

Task 5. Given a side a of a triangle and a median Ma to side a and the measure

of angle A opposite side a, construct thetriengle,

Rule 5. Apply r, using the mid-point of a as
center, and Ha as radius; construct the
locus of possible vertices of angle A sub-

tending segment a (r, ) using a as the seg-

AV .
ment ; and apply Ty using the intersection

point and side a.

Task 6. Given side a of a triangle, the height H, to side a, and the measure
of angle A opposite side a, construct the triangle.

- Rule 6. Apply r,, to segment a using Cig

/ A - PL
: = e s T*'-' distance Ha; apply Ty to segment a and
! ;! '
' ////// i tf apply Ty using the intersection point and
- ;o gide a.

' / ' d

a

Task 7, Given 2 triangle, find the‘point inside the triangle such that each of
the sides is subtended by an arc of 120° from the point.

Rule 7. Apply ?AV using one side of the
:"\ ' triangle; apply r,, using another side of
N the triangle; the point of intersection is

i the desired point.

——
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Task 8. Given a triangle, find the circle which is tangent to the three sides.

(Inscribe a circle.)

AN Rule 8. Ceonstruct the locus of points equi-
/f :i\ distant from two given lines (rAB) using two
/ﬁf ‘l\\\ sides of the triangle; apply FAB to another
ST pair of sides; measure the dis<¢ance from the
'/‘1/ T §)§\\ point of intersection of the two loci to a
EAN 7N\

using the

c
point of intersection as center and the ob-

IR - ; side of the triangle; and apply ¢
tained distance as radius.

Task 9. Given a triangle, find a circle which passes through three vertices

(eircumscribe a éircle).

Rule 3. Construct the locus of points equi-
distant from two giwven points (rPB) using

two vertices of the triangle; apply r using

PB
two other vertices of the triangle; determine

the distance from the point of intersection

to one of the vertices and apply r, using

C
the point of intersection as center and the

T e obtained distance as radius.

Task 10. Given three intersecting lines, not all intersecting at a common point,
construct a circle which is tangent to two of the lines and whose center is on
the third.

Rule 10. Apply T, to two of the lines;
apply the identity rule to the other line
(i.e., use the other line as the locus);
determine tiic distance from the point of
intersection of the two loci to one of the

other lines and apply r. using the point of

C
intersection as center and the obtained

distance as radius.
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Tagk 1i. Given two parallel lines and a point between them, find a circle

which is tangent to the two ii. s and passes through the point.

Rule 11. Construct the locus of points

—’//__7__<_____.-—— ejuidistant from two parallel lines (rPE);
B /

~ determinz the distaace between the obtained
— (—' - — |~ T locus and one of the lines, then auply .
\.\ ! using the given point and the obtaiued
. S
/—".—— distance; apply L5 using the intersection

of the two loci as the center and the ob-~

tained distance as radius.
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IppC

LLC

“pL

PB

Circle rule

Median locus

Circle. rule

Point-line

circle rule

Paint-point

circle rule -

Line~line

circle rule

-Parallel line

rule

Perpendicular
bisector rule

Angle bisector
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Table 2

" Component Rules for,Two Loci Tasks

rule

Construct the locus of points at a given distance from a
given point.
Domain: Set of pairs consisting of one point and one
distance.
Range:  Set of circles (arcs)

Construct the midpoint of a given line segment ard then
construct the locus of points at a given distance from the
midpoint.
Domain: Set of pairs consisting of one line segment,
one distance,
Range: Set of circles (arcs).

Determine the distance between a given point and a2 given line
and then construct the locus of points at the obtained dis-
tance from the given point.
Domain: Set of pairs consisting of one point and one
‘1line. -
Range: ' Set of circies (arcs)

Determine the distance between two given poinis and then
construct the locus of points at the obtained distance from
one given point,

Domain: Set of pairs consisting of two points.

Rq_g_' Set of circles (arcs). o~

Determine the distance between two given parallel lines and
then construct the locus of points at the obtained distance
from a given point.
Domain: Set of triples consisting of two parallel lines
and a point.
Range: Set of circles (arcs).
Construct the locus of points at a given distance from a
given line. :
Domain: Set of pairs conwisting of one line, one distance.
Range: Set of stralght lipes.

Construct the locus of points 2quidistant from two giwven
points.

Comain: Set of pairs consisting of two points.

Range: Set of straight iines (perpendicular bisectors).

Construct the locus of points equidistant from tuo given
intersecting lines.

Domain: Set of pairs of nonparallel lines.

Range: Set of straight lines {angle bisectors).
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Angle vertices Construct the locus of vertices of an angle of given measure

rule

Paralle’
equidistance

rule

Triangle
rule

subtending a given line segment.
Domain: Set of pairs consisting of a line segment .
and an angle of piven measure.
Range: Set of arcs.

Construct the locus of points equidistant from two given
parallel lines,

Domain: Set of pairs of parallel lines.

Range: Set of straight lines.

From a peoint not on a given line segment, draw segments to
the endpoints of the given segment (i.e., construct a
triangle given a side and an opposite vertex).
Domain: Set of palrs consistiag of a lin= segment and
. a peint not on the segment.
Range: Set of triangles.
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APPENDIX B

Table 3

Similar Figures Tasks and Solution Rules

Task 1. Given a right triangle inscribe a square in which two sides coincide

with the legs of the triangle.

e m———— —

st

Rule 1. Construct an arbitrary square such
that two sides coincide with the legs of the
triangle (rss).1 Apply the similarity rule

(rps) where r_ . 1s a general rule in which

PS
corresponding pocints of the ,goal scquare and

‘the arbitrary square are used to determine

a point of similarity. The missing point in
the goal square is determined by drawing a
line through the point of similarity and the
corresponding point on the arbitrary squére;
determine the distance between this point of
intersection and one of the legs of the
right trisngle, then ccnstruct a square

with that distance as side (erQ);

Tacx 2. Given a sector of a circlé, inscribe a square in it.

ERIC

IToxt Provided by ERI

Rule 2. Construct an arbitrary square such

that two vertices are equidistant from the
center of the sector and are on the sides of
the sector (X..y+); apply r,. to determine
CH / PS

the points-of intersection of the two ver-
tices of -the goal square on the arc of the
sector; determine the distance between the
two vertices and use that distance as the

side of the goal Sq“fre.('csq')'

[

1. Rule subscripts refer to Table 4, Appendix B.
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Task 3. Given a triangle, inscribe a square in it such that one side of the
square coinclides with one gide of the triangle and the two . .- opposite ver-~

. tices of the square lie on the other two sides of the triangle.: sineuzt = :,

Rule 3. Construct an arbitrary square such
that one side coincides with one side of
the triangle and a third vertex of the

square is on another side of the triangle

(rss); apply Ipg to determine the vertex of

the goal square cerresponding to the fourth
vertex of the arbitrary square; determine
- thé distance between that intersection and
| the side which contains the side of the
square; apply r
side,

6SQ using this distance as

Task 4. Given angles B and C of a triangle and the lerngth of the median “a to .

side a, construct the triangle.

Rule 4. Construct an arBitrary triangle
using the two given angles and construct the
median M_ of the arbitrary triangle (rST);
apply Tpg to the arb}trary triangle to
construct the median of the goal triangle

(1.e. construct the endpoint of the goal

median opposite point A); construct a line

parallel to side a of the arbitrary trian-
gle through the endpoint of the median;
extend the other sides of the arbitrary
triangle to intersect the constiucted paral-
lel liﬁe (tGT)ﬁ
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Task 5. Given angles B and C of a triangle and the altitude Ha to side a,
construct the triangle.

N Rule 5. Apply Tor to the given information
/5\\\
to construct an arbitrary triangle with an
\E\\\\ altitude;.  apply Ipg tO construct the al-
'_iﬁmm_—‘~‘ N titude of the goal triangle; apply Tor to the
L _
- endpoint of the altitude to complete the
triangle.

Task £. Given angles B and C of a triangle and side b opposite angle B,

coustruct the triangle,

Rule 6. Apply Top to the given information
to construct an arbitrary triangle, apply
Tpg to construct side b of the goal tri-
angle; apply Top tO the endpoin: of side bw

to complete the goal triangle.

"8k 7. Given a line and two poiris on the same side of the line, construct a

+ircle tangent to the line which passes through the two poiats.

| , Rule 7. Construct the locus of points equi-
- . )ﬂ,\\ distant from the two given points (rPB);
- / ‘\ choose an arbitrary point on the locus and
R r \M/ ' \ determine the distance between that point
\ ¢ using the
\ /}' point as center and the determined distance

\ \ / and the given line; apply r
———T as radius; apply rp¢ using the intersection
\\\ \ of the locus with the given line as point of

/)REA“ similarity; where the line from the point of
similarity to one of the given points inter-
sects the arbitrary circle, construct a
line from that point. to the center of the
arbitrary circle and construct a linc »aral

lel to this line through the corrcsponding

given point; apply r, using the point of in-

c .
tersection of the parallel line with the

locus given by r as center and the distancr

PB
between tiic center and a given point as ra-

~ dius.
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Task 8. Given two intersecting lines and a point not on either line, construct

a circle tangent to the two lines which passes through the point.

Rule 8, Construct the locus of points equi-

distant from two given lines (r schoose an

AB9
arbitrary point of this locus as center and
determine the distance between the point and

the given line, then apply r,. using the point

as center and the obtained dgstance as ra-
dius tec construct an arbitrary circle; apply
Tpg to determine the point correspondipg to
the given point on the arbitrary circle,
draw a line through the center of the arbi-
trary circle and the obtained point on the
arbitrary circle, then construct a line
parallel to this through the given point;
apply L using the point of intersection of

the parallel line and the locus given by

T,p 3 the center of the gca. circle; deter-
mine the distance from this certer to the

given point and use it as radius.

Task 9. Given two intersecting lines and a point on one of the lines, construct
a circle which has its center on the line containing the point and which passes

through that point and which is tangent to the other line.

Rule 9. Apply an identity rule to the line
containing the given point (i.e., take tue
line as the locus); choese an arbitrary poiat
on the line, determine the distance between
the point and the other given line, apply

- r. using the arbitrary point as center and

C
P
///j; N \ the obtained distance as radius; construct

/ 7 . g
_M,%/ : \ ;/j?N‘?\\\\\\\ a chord from the point of tangency to the
] . v
\\\\\‘ ,/ ol - point on the arbitrary circle corresponding
- to the given point. From the given point corn:

struct a line parallel to this chord. From
the point of intersection of this parallel
line with the other given line ceonstruct a

[SRJ!:‘ perpendicular segment to the given iine ;= % ¢ . =-i-y, apply L using the ob-
i tained point as center and the length of the perpendicular segment as radius.
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Table &

Component Rules for Similar Figures Tasks

T Similar
SS —_—
square rule

rPS Point of
sinpllarity
rule

r Goal square
6 mre

r €{2nd) similar

square rule

ss'

Coenstruct a square in a triangle having sides shorter than
any side of the triangle and with two sides coincident with
legs of a right triangle or with a side coincident with one
side of the triangle and 2 vertex on another side of the
triangle.

Domain: Set of triangles.

Range: Set of squares with two sides coincident with
legs of right triangle or with one side co-
incident and a vertex on another side of the
triangle.

Select a point of intersection of two lines through corres-
ponding points of goal and similar figures as point of
similarity, then construct a line through, or a given line
segment from, the point of similarity through point (S) on
the similar figure corresponding to a point X on the goal
figure, from which the goal figure may be constructed.
Domain: Set of pairs of lines to corresponding points
of goal and similar figures with . point 5
on similar. figure corresponding to a point X
on the goal figure.
Range . Sev of lines through point of similarity and
- given point.

Determine the distance from a point not on a line to a given
line segment, then construct a square having that length as
side with two sides coincident with perpendicular line seg-
ments of a right triangle or with one side coincident with
a side of the triangle and two vertices on the other two
sides of the triangle.
Domain: Set of pairs of triangles and points on one side
of the triangles'"equidistant'"from the other
two sides.
Range : Set of squares with two sides coincident with
pair of perpendicular iine segments of a right
triangle or with one side coincident with a
side of the trizngle and two vertices on the
other two sides of the triangle.

Determine two points on the sides of a sector equidistant
from the intersection of the two sides. Then determine the
distance between the two points. Using that distance con-
struct a square contained in the sector and with the two
points as adjacent vertices.
Domain: <Sectors of circles.
Range: Set of squares with adjacent vertices on
respective lines and at sarme distance from
point of intersection.



Tesq'

NG ]
2]

GT

LL

LL!
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square rule

Similar
triangle

rule

Goal tri-
angle rule

Similar
circle rule

Parallel
lines rule
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lel lines
rule

o e
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Counstruct a line parallel to a given line through point X

on the arc of a sector. Then determine the distance between
point X and the other point of intersection X% of the con-
stiructed parallel line and the arc of the secfor. (Deter-
mine distance between X and .) Construct a square using
that length as side, contained within the sector.

Domain: Set of sectors and vertices of squares
contained in sectors, lines.
Range: Set of squares with two vertices on arcs of the

sectors and two vertices on segments of sectors,

Construct a triangle with a pair of given angles with parts
corresponding to given segments.

Domain: Set of palrs of angles, and other given parts
of goal triangle.
Range: Set of triangles with parts corresponding to

given segments.

Construct a triangle having an integral part a given length
similar to a given triangle with a corresponding part.

Domain: Pairs of triangles with a labeled part and
lengths of part of desired triangle corres-
ponding to labeled part.

Range: Set of triangles having a part with given

length.

See Table 2.
See Table 2.

Construct an arbitrary circle with center on a line tangent
to ancther line.

Domain: Pairs of lines.

Range: Circles with center on one line and tangent

- to another,

From a predetermined point on a circle draw a line through
tte center of the circle. Construct from a given point a
line that is parallel to the drawn line and that intersects
another line containing the center of the circle.

Domain: Circles, points on circles, lines containing
centers of circles.
Range: Points (intersection of lines).

From a predetermined point on a circle draw a chord to a point
where the circle is tangent to a given line. Construct from
a given point a line jarallel to the chord, intersecting the
given line. Apply rule r to the Intersection point.

LL
Domain: Circles, points on circles, points, tangent
lines,
Range: Points.

See Table 2.
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APPENDIX C

Table 5

Auxiliary Figures Tasks and Solution Rules

Task 1. Given the three medians of a triangle, construct the triangle.

Rule 1. Trisect the three medians; construct
a triangle using segments one-third the
lengths of the medians as sides; extend one
side of the triangle twice its length in

one direction; extend another side of the
triangle its own length in both directions;

draw segments between all pairs of endpoints

that a.e on extended parts of thc medians;

extend these segments until they intersect.

Task 2. Given sides a and c¢ of a triangle, and the altitude Hb to side b,
construct the triangle.
Rule 2, Construct a right triangle with
side a as hypotenuse, and segment Hb as lgg,

(that is, draw an arbitrary line b; con-

B struct Hb perpendicular to b; apply o using
////‘ the other endpoint B of Hb as center with
c// Hbl a the point of intersection of the r. locus
\ S | and 1line b).” Apply . using B as center
__ -\vfil-%,_.,. l and ¢ as radius; couxnect B and the intersec-
o b tion of the r. locus and b.

c

Task 3. Given angle B, the altitude L, to side b, apd the altitude'Ha to side a,

construct the triangle. ’
Rule 3. Construct a right triangie using
angle B (or 180 - B if B > 90°) as an acute
angle, and Ha as the opposite leg; apply r.
using B as ce:*er and Ha as radius; apply
Ty to find the locus of possible vertices

of a 90° angle subtending side c, the hypo-

tenuse of the constructed right triangle;

1. Rule-supscripits refer to Table 6, Appendix C.
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connect the point of intersection ¢f the
two loci with the endpoint of c opposite b
and extend this segment until it intersects
the line containing the other leg of the
constructed right triangle.

Task 4. Given a side of a parallelogram, and its two diagonals, construct the

parallelogram,
Rule 4. Bisect each diégonal; construct a
triangle using the given side of the paral-
Ny = lelogram and sides one-half the length of
~ ~ B -7 // each diagonal. Extend each diagcenal o>
its length from their point of intercection.

-
///////////’ \\\\\\< Draw segments connecting these obtained
~_/

e 2 : points and the endpoints of the given sidé.

Task 5. Given the four sides a, b, c, d of a trapezoid (a and c are parallel,

¢ > a), construct the trapezoid.
\ Rule 5. Subtract side a from side c yicld-

a "“ﬂ(. ing side c-a; construct a triangle from the

/N
N\ /,// sides c-~a, b, d; apply LA using the vertowv
b \\\9 d _ opposite side c-a as center and side 2 as
/ \\ radius; apply r. using the endpoint of ¢

i 3

\ . opposite the constructed triangle as center
c-a c

and side d as radius. From the point of
intersection of the two loci, draw segments

gt ‘to the endpoints of b and c.
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‘Table 6

Component Rules for Auxiliary Figures Tasks

Extend« uxi-
Iiaxy-figure-
to-*oal rule

Asxillary-figure~
and-point.-to~
goal rule

e

Median triangle
rule

Zypotenuse-leg
right triangle
rule .

{
]

Angle -leg
right triangle

rule

Dingonals of

parallelogram-
side triangle
ruls :

Trapezoid

triangle rule

Extend constructed aegments of auxi“iary figure which
are part of the gc_1 figure to their given lengthe,
and draw lines through the endpoints of the extended
segnents to obtain the goal figure,

Domain: Sets of constructed auxiliary figures
and given lengths of partz of goal
figure.

~ Range: Goal figures.,

Through corner points of an auxiliary figure, ansd .
through another point not in the auxiliavy figure,
draw segments to complete a goal fipgure.

Domain: Sets of constructed auxiliary figures
and points which are not elements of
:the_auxiliary figure

Range: Goal figures.

Construct a triangle from segments one-third the
lengths of three given medians.

Domain: Sets of triples of medians.
Range: Triangles.

Construct a right triangle using a given line segment
as hypotenuse and a given altitude as leg.

Domain: Set of pairs of segments {(hypotenuse
and leg).
Range: Right triangles.

Construct.a right triangle using a given acute angle
(or the supplement of a given obtuse angle) and a
given altitude as leg.

Domain: Set of pairs consisting of one angle
zad one leg.
" Range: Right triangles. ~

Construct a triangle from segments one-half the
lengths of given diagonals of a parallelogram and a
given side of the parallelogram.

Domain: Set of triples consisting of two dia-
gonals and a side of parallelograms.
Range: “riangles,

Consitruct a triangle from four sides of a trapezoid
using sides b, d, and the difference of a and c,

where a2 is parallel to c.
Nomaiu: Sets of sides of trapezoids.
Rarge: Triangles.

See Table 2.

See Table 2.
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